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Introduction
As our ability to compute has, and continues, to dramatically 

increase thanks to Moore’s law, there has been an increased interest 
in machine learning, the branch of computer science that allows 
us to learn complex patterns from data. Among the many tools 
stemming from this rich field, Large Language Models (LLMs) are 
arguably the most powerful and well known. LLMs are trained on 
vast amounts of text in order to understand and generate natural 
language. These models can answer questions, summarize infor-
mation, and assist across a wide variety of language-based tasks, 
proving to be a useful tool to humanity at large.

As LLMs grow in size, they have become the target of model 
compression techniques aiming to reduce computational demands 
while preserving model performance. In particular, recent work has 
focused on pruning, the class of methods involving the removal a 
subset of network parameters according to precise criteria, leav-
ing a sparse model with more manageable resource requirements 
and minimal accuracy degradation (Kwon et al., 2022; Sun, Liu, 
Bair, & Kolter, 2024; Dery et al., 2024; J. Li, Dong, & Lei, 2024; Ma, 
Fang, & Wang, 2023; Frantar & Alistarh, 2023; Kurtic et al., 2022).

With LLM-usage becoming more prevalent—accelerated in part 
by model compression techniques making them more resource-
friendly—the challenge of explaining models has become more 
pressing (Zhao et al., 2023). That is to say, while we can train 
models to produce very accurate outputs, we do not know precisely 
how these outputs are produced. Being able to explain how an 
LLM arrives at a particular output has important implications 
for uncovering and debugging model bias, building user trust, 
and enabling transparency in decision-making. Accordingly, the 
field of eXplainable AI (XAI) has emerged, seeking to address 
these concerns, with recent work in the XAI literature focusing on 
developing and evaluating methods for explaining LLMs. Of the 
many explanation methods proposed, feature-based attribution 

methods refer to the class of methods that seek to explain model 
outputs in terms of the inputs to the model (Sanyal & Ren, 2021; 
Volkov & Averkin, 2024; Hao, Dong, Wei, & Xu, 2021)(Enguehard, 
2023; Lyu, Apidianaki, & Callison-Burch, 2024).

Despite the focus on each issue in isolation, the relationship 
between LLM-pruning and LLM-explainability has not received 
much attention in the literature. As model compression techniques 
improve and become more widely used before model deployment, 
it is important to understand if and how the explainability of the 
deployed model is affected.

By investigating the effect of pruning on the explainability 
of LLMs, our work aims to make progress in building a bridge 
between developments in model compression and XAI. We 
hypothesize that by reducing model complexity through the 
extraction of high-performing subnetworks, pruning yields mod-
els whose prediction function has lower curvature, increasing 
LLM explainability.

We test our hypothesis through experiments with two closely 
related encoder-only models, DistilBERT (Sanh, Debut, Chaumond, 
& Wolf, 2020) and RoBERTa (Liu et al., 2019), trained on the IMDb 
(Maas et al., 2011) and Yelp Polarity (Zhang, Zhao, & LeCun, 2015) 
datasets for sequence classification. Following XAI literature, 
we employ SHapley Additive exPlanations (SHAP) (Lundberg & 
Lee, 2017) and Integrated Gradients (IG) (Sundararajan, Taly, & 
Yan, 2017), feature-attribution-based explanation methods, and 
identify the faithfulness of explanations as a necessary condition 
for a model to be explainable (Lyu et al., 2024). We choose these 
models, datasets, and explanation methods because of their ubiquity 
in the literature and in practical applications. As both models 
are variants of BERT, their architectural similarities allow us to 
isolate the effects if pruning on explainability more precisely than 
what would be possible with models that differ more substantially. 
Additionally, the relatively small size of these models (on the order 
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of 100 million parameters) lets us run several experiments that 
would otherwise be prohibitively expensive.

We select zero-order pruning methods, including unstructured 
and structured magnitude-based pruning and random pruning, 
and prune the models with each method to varying degrees of 
sparsity. We evaluate the faithfulness of explanations of each 
pruned subnetwork against the faithfulness of explanations of 
the unpruned network. We also evaluate each pruned subnetwork 
against a network of equivalent size that is trained from a 
random initialization—this gives insight into whether the particular 
pruning method affects explanation faithfulness, or if effects on 
explainability should be attributed primarily to the reduction in 
network size.

Finally, we investigate the local geometry of each model to 
understand how pruning affects the faithfulness of local expla-
nation methods. We analyze network geometry through the lens 
of local curvature, since SHAP operates on the assumption of 
local linearity1. In particular, we approximate the global aver-
age of the local curvature for training samples. We estimate the 
local curvatures using an approximation of the Hessian diagonals 
computed through a variation of Hutchinson’s trace estimator 
(Yao et al., 2021).

We find that magnitude-based pruning does not significantly 
affect explanation faithfulness, and importantly, does not hurt 
explainability while maintaining test accuracy comparable to an 
unpruned model. However, we find that Random Unstructured 
pruning can degrade faithfulness of explanations and argue that 
this occurs due to the emergence of high-curvature regions that 
violate linearity assumptions of the explanation methods.

Methods
In this section, we describe and motivate the models, datasets, 

methods, and metrics used in our experiments. We then detail 
our approach.

2.1 Models
We conduct experiments using DistilBERT and RoBERTa, 

high-performing language models based on the transformerencoder 
architecture (Devlin, Chang, Lee, & Toutanova, 2019)(Liu et al., 
2019). These models are commonly used in related literature for 
benchmarking of language modeling tasks and are prevalent in 
practical applications for Natural Language Processing (NLP), 
making them suitable choices for studying the topic of this work.

2.2 Datasets
We train and evaluate our models on the IMDb (Maas et al., 

2011) and Yelp Polarity (Zhang et al., 2015) datasets for the task of 
binary sentiment classification. These datasets are commonly used 
in conjunction with DistilBERT and RoBERTa in the literature 
for experimentation in the NLP domain.

2.3 Pruning Methods
We prune our trained models using Random Unstruc-

tured, L1 Unstructured, and L1 Structured pruning. Random 
Unstructured pruning removes a random subset of parameters 
constituting a specified percentage of the network. The latter two 

are magnitude-based methods, which are the foundation of both 
classic and more recent pruning techniques (Han, Pool, Tran, 
& Dally, 2015; Sun et al., 2024). For example, pruning 80% of 
a network with L1 Unstructured pruning removes the smallest 
80% of parameters ordered by L1-norm. In contrast, L1 Structured 
pruning removes entire channels with the lowest L1-norm.

2.4 Explanation Methods
We generate explanations of the model’s sentiment classifications 

using the feature attribution methods SHapley Additive exPlanations 
(SHAP) (Lundberg & Lee, 2017) and Integrated Gradients (IG) 
(Sundararajan et al., 2017). These methods assign importance scores 
to input features for a particular model prediction. 

SHAP computes feature attributions based on Shapley values 
from cooperative game theory, approximating each feature’s 
marginal contribution to the prediction by considering different 
subsets of features (Lundberg & Lee, 2017). IG approximates the 
integral of gradients of the model’s output with respect to the 
input features along the straight-line path from a baseline input 
to the given input (Sundararajan et al., 2017). Following standard 
practice, we use the zero vector as the baseline input.

We follow previous work in adopting these methods for 
explaining language models. For example, Mosca et al. review 
SHAP-based methods applied to NLP tasks (Mosca, Szigeti, 
Tragianni, Gallagher, & Groh, 2022). Hao et al. (Hao et al., 2021) 
and Janizek et al. (Janizek, Sturmfels, & Lee, 2020) adapt IG to 
explain token importance in sentiment classification.

2.5 Geometry
To assess the local geometry of the functions represented by 

the models of interest, we consider the average local curvature of 
the logit function with respect to the embeddings. For each model, 
we compute the local curvature around the predictions for 10% 
of the training set and take the average.

Computing second order derivatives for machine learning 
models with high parameter count is prohibitively expensive 
(Elsayed, Farrahi, Dangel, & Mahmood, 2024). Therefore, we 
adopt compute-efficient approximations of local curvature. There 
is a consensus in the literature that the Hessian diagonal is a 
good proxy for this task (Elsayed et al., 2024)(Yao et al., 2021). 
In particular, we compute an approximation of the diagonal of 
the Hessian around a given prediction using a modification of 
Hutchinson’s method for trace estimation, modelled after the 
implementation by Yao et al. (Yao et al., 2021). This method makes 
use of the fact that

where  is pointwise multiplication and the expectation can be taken 
over a Rademacher or Gaussian distribution (Meyer & Avron, 2023). 
We choose the latter. The expectation is approximated by averaging 
over vectors v randomly drawn from the distribution.

Given the approximate Hessian diagonals, we then proceed 
with averaging them over a 10% subset of the training set.

We further distill the resulting average Hessian diagonal by 
looking at the largest absolute value achieved by its elements as 
well as their average absolute value, as the diagonals themselves 
are too large for human interpretation.

1 We do not discuss magnitudes of gradients in the body of this paper, as we do not expect SHAP nor IG to be influenced by them. We did, however, collect gradient-
magnitude data and find that gradient magnitude is not correlated with faithfulness of explanations. The data can be found in figure 13.
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sparsity, we randomly initialize a model to serve as the unpruned, 
‘base’ network. We then create a second model with its own random 
initializations and perform Random Unstructured pruning to 
the target sparsity. This second model serves as an independent, 
‘smaller’ network.

We choose to start from random initializations to simulate 
the process of constructing and training a model from end to 
end. Additionally, starting with random initializations allows us 
to create and test the ‘smaller’ model; starting from pretrained 
weights would make the ‘smaller’ model just a pruned version of 
‘base,’ rather than a smaller version with an independent set of 
parameters.

After the initialization of ‘base’ and ‘smaller,’ we train both 
for 3 epochs on the given dataset. Then, for each pruning method, 
we make a copy of ‘base’ and prune the parameters to the target 
sparsity. Following standard practice, we train each pruned model 
for an additional epoch to allow for accuracy recovery.

FCor Approximation. Following training and pruning, we 
evaluate the explainability of each model as follows. Due to 
resource constraints, we select 3% of the test dataset and generate 
an explanation for the model’s output on each test sample. For 
each test sample x, we compute an FCor value. We first fix |S| in 
Eq. 3 with a hyperparameter k. We then randomly sample 100 
subsets xs of size k from x and set them to the [MASK] token. This 
gives an estimate of FCor for that data point, since we do not see 
all  subsets in the calculation, which is computationally prohibi-
tive for long input sequences. In future work, we plan to evaluate 
faithfulness over more samples and with more perturbations per 
sample in order to achieve more accurate approximations of 
faithfulness.

Figure 1. Test accuracies(%) across sparsities. Accuracies of pruned models 
are averaged across the RandUnstruct, L1Unstruct, and L1Struct methods. 
Accuracies of base models are averaged across the three ‘base’ models trained 
for each model, dataset combination.

We then take the mean of the local FCor estimates, giving a 
measure of the average faithfulness of explanations for that 
particular combination of model, dataset, explanation method, 
and k.

We select the [MASK] token as our baseline value for input 
perturbations during FCor computation because it aligns with 
DistilBERT’s pre-training objective of masked language modeling 
(Devlin et al., 2019). Moreover, the SHAP library uses the [MASK] 
token when perturbing inputs to estimate feature importance, 
so it is a natural choice for faithfulness evaluation (Lundberg & 
Lee, 2017).

2.6 Evaluation Metrics
We use the following evaluation metrics to study the effect of 

pruning on model explainability.
Accuracy. We consider the accuracy of each model variation 

on the test dataset in order to verify the usefulness of the pruned 
models; in particular, we aim to investigate whether pruning affects 
explainability while avoiding sacrifices in model accuracy. In a 
practical application, a highly pruned model would not be particularly 
useful if it suffered from significant accuracy degradation, even if it 
saw improvements in explainability.

Faithfulness. Following Lyu et al., we identify faithfulness as 
the most important principle for evaluating an explanation (Lyu 
et al., 2024). Accordingly, we use the faithfulness of explanations 
as a metric for the explainability of our models.

Faithfulness is the degree to which an explanation accurately 
reflects how a model made a prediction; an unfaithful explanation, 
then, does not accurately describe a model’s decision-making 
process and therefore is not much of an explanation (Lyu et al., 
2024). In the context of feature attribution explanations, 
faithfulness refers to the extent to which an explanation correctly 
captures which features of an input the model uses to generate its 
corresponding output (Lyu et al., 2024).

Previous work has proposed various methods for measuring 
the faithfulness of explanations by determining how well-aligned 
feature attributions are with true model behavior. Two faithfulness 
metrics frequently used in the XAI literature are Infidelity (INFD) 
(Yeh, Hsieh, Suggala, Inouye, & Ravikumar, 2019) and Faithfulness 
Correlation (FCor) (Bhatt, Weller, & Moura, 2020). These metrics rely 
on perturbing input features, measuring corresponding changes 
in model output, and comparing these changes to the importance 
scores of the perturbed features.

Yeh et al. (Yeh et al., 2019) define Infidelity as

.
Here, f is a black-box model, and Φ is an explanation functional. 

I  is a random variable, where µI represents input perturbations 
of interest. A typical perturbation I is to replace a feature in x 
with some baseline value, such as 0. For a faithful explanation, 
we would expect the model output to change by an amount 
proportional to the sum of the importance scores of the perturbed 
features (Decker, Bhattarai, Gu, Tresp, & Buettner, 2024).

Bhatt et al. (Bhatt et al., 2020) measure faithfulness with 
correlation. For a model f, explanation functional Φ, input x , 
baseline value , and subset size |S|, FCor defines the faithfulness 
of Φ to f at x as

Here, corr is the Pearson correlation. Faithful explanations 
should have an FCor close to 1, indicating a strong positive 
correlation between the attribution scores given by Φ for an input 
x and the changes in the predictions of f under corresponding 
perturbations to x.

We select the FCor metric because it provides an interpretable 
score on a standard scale in the range [−1, 1], facilitating comparison 
across explanation method.

2.7 Our Approach
Model Generation. Given a model architecture and target 
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k Hyperparameter. We ran experiments with different k to 
study whether masking different numbers of tokens at a time has 
an effect on FCor; in particular, we were interested in observing 
whether token importance scores are independent, or if explana-
tions vary in their faithfulness when we consider groups of tokens 
and their summed importance. Initial tests showed negligible 
differences in FCor scores across k = 1, 2, 3, 5, suggesting that 
explanations are similarly faithful for each of these feature subset 
sizes. Future work will consider greater k to study if faithfulness 
is impacted. We fix k = 3 for our remaining experiments, due to 
resource constraints.

Experiments and Results
We conduct experiments on DistilBERT and base RoBERTa, 

trained on IMDb and Yelp Polarity. We prune each model using 
Random Unstructured, L1 Unstructured, and L1 Structured pruning, 
to sparsities of 40%, 60%, and 80%. We elect these percentages 
to balance computational constraints and the minimal effects 
initially observed when pruning under 40%.

We evaluate the faithfulness of SHAP and IG explanations 
for each model using FCor with k = 3 and plot the distribution of 
the scores across test samples. We plot the distribution of FCor 

scores for SHAP on all different models and report the average 
FCor scores in Figure 2. We find no significant pattern in our 
results, but note that scores were much more consistent across 
all DistilBERT experiments compared to RoBERTa, indicating 
that explainability may rely more on model architecture than 
sparsity or training data.

To quantify the global average of a model’s local curvature, we 
use 10% of its training data to approximate the Hessian Diagonal 
for each sample using the variation of Hutchinson’s trace esti-
mation described in 2.5. For each sample, we use 3 directional 
vectors drawn from a standard normal distribution, to reduce 
computational costs. When computing the maximum value 
along this diagonal, we consistently find extreme outliers among 
the models pruned via random unstructured pruning, indicat-
ing this method may produce regions of high curvature in the 
underlying model’s geometry. Further, we average over many 
test samples to help mitigate variance in local approximations 
caused by a low number of directional vectors (Figure 4). We 
note that, in this case, randomly pruned models still result in 
the largest values. Increasing the number of directional vectors 
may result in a more accurate estimation for each sample, and 
is left for future work.

Figure 3. Maximum absolute value of Hessian Diagonal (min in bold, values rounded to 2 decimal places).

Figure 2. Average FCor Scores (max in bold, values rounded to 2 decimal places).

Figure 4. Average absolute value of Hessian Diagonal (min in bold, values rounded to 2 decimal places).
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Discussion
We discuss the results of our experiments, highlight key findings, 

and explain our findings in terms of local geometry.
We observe in all our experiments that magnitude-based pruning 

does not significantly degrade accuracy on the test set. This agrees 
with the pruning literature, which has found that a prune-retrain 
approach can achieve high levels of sparsity with competitive accuracy 
(Han et al., 2015; Frankle & Carbin, 2019).

4.1 Standard IG is ill-suited for the language domain
IG assumes that (1) input features are independent, and (2) 

there exists a zero-information baseline from which a straight-line 
path integral yields faithful feature attributions (Sundararajan 
et al., 2017). IG was developed with the image classification 
domain in mind, where it was designed to operate on pixels as 
input features. In this domain, assumptions (1) and (2) are intuitively 
reasonable due to the continuous nature of image data. However, 
these assumptions do not hold for language models: language 
is inherently context dependent, invalidating (1); and (2) does 
not hold because points interpolated along a straight-line path 
from, say, a baseline zero-vector to the input embedding cannot 
be assumed to represent valid text data, since the word embedding 
space is discrete (Sanyal & Ren, 2021). Indeed, our experiments 
give evidence for the unfaithfulness of IG explanations for language 
models: across all models, pruning methods, and sparsities, the 
distribution of FCor scores of IG explanations are approximately 
normal with mean 0 (Figures S1, S2, S3, S4). This implies that 
there is no correlation between the IG-assigned token importance 
scores and the actual behavior of the model.

While assumption (1) is unavoidable due to the nature of natural 
language, variations of IG have been developed to correct (2) for 
language settings by considering semantical ly plausible 
non-linear paths from a baseline embedding to the input embedding 
(Enguehard, 2023; Sanyal & Ren, 2021).

We observe significantly higher FCor scores for SHAP 
explanations, suggesting that the failure of assumption (2) underlies 
IG’s unfaithfulness. SHAP still assumes (1) (Lundberg & Lee, 2017), 
but the FCor scores indicate a moderate to strong positive correlation 
between claimed feature importances and model behavior (Figure 
2). We leave further investigation of these claims and evaluation 
using improved IG methods (Enguehard, 2023; Sanyal & Ren, 
2021) to future work.

4.2 Magnitude-based pruning does not affect explainability, 
but Random Unstructured pruning may hurt it

Our results do not show a significant effect of pruning on 
faithfulness of explanations for magnitude-based methods. In our 
experiments (Figures 5, 6, 8), we see that for a particular choice of 
architecture and dataset, the distribution of FCor scores does not 
vary significantly between the ‘base’ model and the models pruned with 
L1Unstructured and L1Structured methods. A notable exception 
is RoBERTa trained on IMDb (Figure 7), which we discuss further 
below. Moreover, the data do not show a consistent relationship 
between target sparsity and FCor score with remaining variables 
held constant (Figure 2), suggesting that changes in explanation 
faithfulness are primarily due to other factors, particularly model 
architecture and dataset.

However, we observe that explanations of Random Unstructured 
pruned models generally underperform in faithfulness. In particular, 

Random Unstructured pruning never gives the highest FCor for 
a particular model, dataset, and sparsity. Moreover, it gives the lowest 
FCor of the pruning methods in all but 3 experiments, where 
RandUnstruct has the second lowest FCor by only 0.01-2 (Figure 
2). These findings suggest that Random Unstructured pruning may 
negatively affect model explainability by undermining faithfulness of 
explanations. To understand why Random Unstructured pruning 
may negatively affect model explainability, we consider the effect 
of pruning on the local geometry of a model’s decision function.

4.3 Random Unstructured pruning creates highly curved 
regions

We observe that Random Unstructured pruned models 
have the largest Maximum Absolute Value of Hessian Diagonal 
(MAVHD) across the pruning methods for all but 3 experiments 
(Figure 3). Furthermore, the average MAVHD across all Random 
Unstructured pruned models is about 1069x and 1323x the average 
MAVHD for L1Unstructured pruned models and L1Structured 
pruned models, respectively. Note the outliers 739.25 and 14090.04 
in the entries for DistilBERT-IMDb-80pct and RoBERTa-Yelp-
80pct, respectively. We discuss a possible explanation below.

These findings suggest that Random Unstructured pruning 
destroys local linearity of the models’ underlying functions. A 
pruned model can be imagined as a fewer-parameter approximation of 
a base function. Removing weights at random has the potential to 
significantly modify the geometry of the function, creating regions 
with jagged decision boundaries and increased local curvature. 
By contrast, magnitude-based methods prune the weights that 
contribute least to the output, reducing the capacity for altering 
the behavior of the function. We hypothesize that, over models with 
large numbers of parameters (~ 100M), there is a low probability 
of creating a high-curvature region through random pruning, 
resulting in a similar average local curvature despite lower explainability 
due to a few diabolical regions.

The presence of such highly curved regions can be verified 
by considering the MAVHD. The data show that MAVHD for 
RandUnstruct is substantially higher than other methods in most 
cases, despite the average value being very similar (Figures 3, 4).

The data also suggest that the probability of high-curvature 
regions emerging depends on the target sparsity, with 80% Random 
Unstructured pruning resulting in extreme MAVHD values in 
some cases.

We also find that the ‘smaller’ models have large maximum 
local curvature. Recall that we create the smaller model by 
randomly removing weights in an initialization independent from 
the ‘base,’ running the same risk of creating curved regions as 
the RandUnstruct method. However, the smaller model trains for 
longer at that level of sparsity and therefore has more opportunities 
to smooth curved regions during training. The data reflect this, 
as the largest MAVHD for the smaller models is substantially less 
than that of the random unstructured models (14090.04 vs 184.78).

Precisely characterizing the mechanism by which random 
pruning produces sharply curved regions is an interesting direction 
for future work.

4.4 Highly curved regions make SHAP less faithful
The SHAP explanation method operates on the assumption of 

a locally linear model (Lundberg & Lee, 2017). A high MAVHD 
indicates the presence of a region with high local curvature, 
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Figure 5. Distributions of FCor scores for SHAP on DistilBERT on IMDb.
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Figure 6. Distributions of FCor scores for SHAP on DistilBERT on Yelp.
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Figure 7. Distributions of FCor scores for SHAP on RoBERTa on IMDB.
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Figure 8. Distributions of FCor scores for SHAP on RoBERTa on Yelp.
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implying local non-linearity; therefore, we expect high MAVHD 
to correspond with low FCor scores, since a model that is locally 
non-linear undermines the faithfulness of SHAP explanations. 
Indeed, we find a strong negative correlation between FCor scores 
and the MAVHD, with r = −0.76, r = −0.13, r = −0.65, and r = 
−0.72 for DistilBERT-IMDb, DistilBERT-Yelp, RoBERTa-IMDb, 
and RoBERTaYelp, respectively. Note the outlying weak correla-
tion for DistilBERT trained on Yelp; we hypothesize that due to 
using only 3% and 10% of the training sets for FCor and Hessian 
computation, respectively, our FCor and Hessian approximations 
are not equal in their accuracy and coverage of the model’s deci-
sion landscape, potentially explaining outliers in results. Future 
work will address these issues.

4.5 Explainability is architecture-sensitive
We observe that explanation faithfulness is significantly 

impacted by model architecture. This is a very intuitive result, as 
one could imagine the trivial case of a constant function which 
is maximally explainable. However, our results give some insight 
into how explainability is impacted by the architecture of complex 
language models.

First, we observe that the distribution of FCor scores has a char-
acteristic shape that varies primarily with architecture, holding 
all else constant. This suggests that the explainability of a model 
and its approximations (i.e. pruned models) is highly sensitive to 
choice of architecture (Figures 5, 6 vs. 7, 8).

Second, we observe more variation in FCor across prun-
ing methods when applied to RoBERTa. This suggests that, in 
addition to inf luencing faithfulness of explanations of a model, 
choice of architecture also impacts a model’s sensitivity to prun-
ing with respect to explainability. Framing this in the context 
of the pruning-curvature hypothesis discussed in section 4.3, it 
is possible that the probability of creating a curved region from 
a random pruning event is determined by model architecture. 
For example, Figures 7 and 8 demonstrate that the distributions 

of FCor for the RandUnstruct and ‘smaller’ models (which we 
hypothesize to be the most susceptible to the creation of high-
curvature regions) tend to vary the most dramatically from the 
‘base’ distribution. In contrast, the DistilBERT distributions 
exhibit negligible changes in their characteristic shape (Figures 
5, 6).

To explain the differences in explainability across architec-
tures, we observe that (1) RoBERTa has twice as many layers 
as DistilBERT, and (2) RoBERTa makes use of a pooling layer, 
which is designed to aggregate and capture all of the information 
contained within an encoded, variable-length input sequence 
and compress it into a single, fixed-length vector (Liu et al., 
2019).

We hypothesize that the increased sensitivity of RoBERTa 
to pruning compared to DistilBERT stems from the inclusion 
of the pooling layer. Intuitively, the process of condensing an 
entire variable-length representation sequence into a fixed-length 
vector may result in a very dense and uninterpretable representa-
tion vector that is used directly to compute the model’s output. 
Future work will take a modular approach to explainability 
and consider the effects of particular architectural choices on 
a model’s explainability.

Related Work 
There is some existing literature at the intersection of XAI 

and neural network pruning. Weber et al. study the effect of 
pruning on CNN explainability, finding that magnitude-based 
pruning methods are effective in reducing network complexity 
and thereby improving explainability of image classification 
models (Weber, Merkle, Schöttle, & Schlögl, 2023). Khalifa et al. 
use tree-based pruning methods to transform Random Forest 
models into explainable models without sacrificing accuracy 
(Khalifa, Abdelkader, & Elsaid, 2024).

In addition, there has been work on explainability-aware 
pruning methods, which seek to use explainability criteria to 

Figure 9. Maximum absolute value of gradient (min in bold, values rounded to 2 decimal places).

Figure 10. Average absolute value of gradient (min in bold, values rounded to 2 decimal places).
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determine which parameters or filters of a model to prune (Yu 
& Xiang, 2023; Z. Li & Song, 2024).

However, to the best of our knowledge, previous work has not 
investigated the effect of pruning on the explainability of LLMs. 
The impact of pruning on the local geometry of the network has 
not been well-studied. While there have been investigations on 
the effect of pruning on the geometry of the loss landscape or 
on the decision boundaries, no such work has been conducted 
for the impact of pruning on the local geometry of the function 
represented by a neural network (Cai et al., 2023; Tran, Fioretto, 
Kim, & Naidu, 2022).

Conclusion
This work investigates the effect of zero-order pruning 

methods on the explainability of DistilBERT and RoBERTa, as 
measured by the FCor scores of SHAP and IG explanations. We 
initially find that IG is ill-suited for the language domain due 
to the discrete nature of natural language, while SHAP gives 
much more faithful explanations for the sentiment analysis task.

We do not find that magnitude-based pruning affects 
explainability; however, it preserves accuracy as expected. In 
contrast, Random Unstructured pruning had a negative effect 
on explainability on average. We explain this finding by showing 
that Random Unstructured pruning can create highly curved 
regions in a network’s decision function, undermining SHAP 
faithfulness by violating the local linearity assumption. Finally, 
we observe that explanation faithfulness is highly dependent on 
model architecture, and offer an explanation based on RoBERTa’s 
pooling layer.

Limitations and Future Work. We experiment with relatively 
small language models by current standards. Future work will 
experiment with larger models and more varied architectures 
to study how the relationship between pruning and explain-
ability is affected.

Both the IMDb and Yelp Polarity datasets used in this work 
represent the task of binary sentiment classification. Future work 
will investigate in more depth the effect of varying dataset task, 
size, and complexity on the trained model’s explainability. This 
is an especially interesting line of future work, since our results 
show that both accuracy and FCor increase across the board 
when comparing models trained on IMDb to models trained on 
Yelp, holding all else constant (Figures 1, 2). We hypothesize that 
the improvement in accuracy is due to the Yelp dataset’s larger 
size, but the effect of the choice of dataset on model explain-
ability is unclear.

Additionally, we recognize that the paradigm in state-
of-the-art language model training favors the fine-tuning of 
highperforming foundation models to specific tasks, contrast-
ing with our reinitialization and train from scratch approach. 
Future work will investigate if our results remain consistent 
across training schemes.

There also remains much to explore with regard to other 
pruning methods. While this work selects classic, magnitude 
based methods as a starting point for investigating the effect of 
pruning on explainability, recent work has developed pruning 
methods tailored for LLMs, including structured and higher-
order methods (Kwon et al., 2022; Sun et al., 2024; Dery et al., 
2024; J. Li et al., 2024; Ma et al., 2023; Frantar & Alistarh, 2023; 
Kurtic et al., 2022). These methods may vary in their effect on 

the evaluation metrics. Additionally, our sparsity levels are not 
exhaustive, and there remains much to learn on how pruning 
below 40% and beyond 80% affects model accuracy, explanation 
faithfulness, and network geometry.

Future work will investigate the effect of pruning on other 
metrics in the explainability literature such as robustness (Chen, 
Subhash, Havasi, Pan, & Doshi-Velez, 2024).

Furthermore, it will be interesting to perform a more fine-
grained analysis of the models’ local geometries and to develop 
theoretical guarantees for the effects of different pruning meth-
ods on the geometry of the network.

Finally, all of the future work mentioned so far will be helpful 
for developing an explainability-optimizing pruning method 
that does not significantly impact accuracy.

Additional Materials
Supplemental figures S1-S4 can be found online at thurj.org.
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