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Overview
This paper is broken down into 5 sections. In section 1, we give 

an introduction of our topic. This is followed by section 2, which 
discusses the known minimal solvability number of shorter 
caterpillars. We discuss their solvability and overall minimal 
solvability number. We then follow with our main results in 
section 3, which focuses on giving the upper bounds on the 
minimal solvability number for caterpillars of length 3. We finally 
finish our content with section 4, which gives specific examples of 
caterpillars of length 3 in which we know have minimal solvability 
number ms(G) = 1. Section 5 discusses possible open questions 
for further research.

Introduction
Peg solitaire is a traditional one-player game where a player 

has a board with cells where all but one are filled with pegs. A 
move in peg solitaire is known as a jump. A jump consists of three 
adjacent spaces, where the first two vertices have a peg, and the 
last vertex is a hole. A player would use the first peg to jump over 
the peg it is adjacent to into the empty hole. A player’s objective 
is, through a series of jumps, to get rid of all the pegs on the board 
until left with only one. This game is traditionally played on an 
English cross shaped board (de Wiljes and Kreh, 2022).

Figure 1. A jump move in peg solitaire.

Naturally, one can play on different shaped boards which can 
be as big or as small as desired. In fact, this combinatorial game 
can be played on boards that resemble arbitrary connected graphs. 
In 2011, Beeler and Hoilman (Beeler and Hoilman, 2011) generalized 
the game of peg solitaire to different graphs. Pegging moves on 
graphs, focusing on questions like how many pegs must one put 
on a graph so that, with any given distribution of pegs on any 
empty vertex v, one can find a sequence of jumps that places a 
peg at vertex v, were also studied in 2009 and 2006 respectively 
(Niculescu and Niculescu, 2009; Helleloid et al., 2006). A recent 
2022 survey by de Wiljes and Kreh collects many papers in the 
peg solitaire literature. Similar to the cross board, we can play 
peg solitaire on a connected graph, G = (V, E), by filling in every 

vertex but one with a peg. One vertex must be left empty, which 
we will refer to as the starting hole.

To describe an arbitrary jump, let us say we are given 3 adjacent 
vertices, a, b, c, where the first two have pegs and the last is a hole. 
A jump move then uses the peg in a to jump over the second peg 
in b into the empty hole in c, which we will denote as a· ·c. Upon 
performing this jump, the peg that was jumped over is removed, 
meaning we are now left with holes in a and b while c now has a 
peg. With every jump, a player always removes one peg and one 
peg only. Given a graph with n vertices for n  N, the maximum 
number of moves a player can perform is (n − 2); by that point, a 
player would only have one peg remaining, winning the game.

Though the goal of peg solitaire is to remove all but one peg, 
achieving this isn’t possible on every graph due to structural con-
straints. Some graphs inherently lack a configuration that allows a 
single remaining peg, making them unsolvable. To systematically study 
which graphs can be made solvable, we will introduce terminology 
and concepts developed by de Wiljes and Kreh specifically for peg 
solitaire on graphs (2022): 

When beginning the game, we have a starting state S  V of 
empty vertices, which will always be a single vertex. After playing 
a game, we end up with a terminal state T  V of vertices with 
pegs and no more jumps are possible. We say T is associated to S 
if T can be reached from S through a sequence of jumps. With 
this in mind, we get the following:

Definition 1.1. A graph G is solvable if there is some v  V such 
that the starting state S = {v} has an associated terminal state 
consisting of a single vertex.
Definition 1.2. A graph G is k-solvable if there is some v  V such 
that the starting state S = {v} has an associated terminal state 
consisting of k vertices.

Figure 2. Adding an edge to improve solvability.

For the sake of this paper, we will only refer to a graph G as 
k-solvable if there exists no j  N where j < k such that the graph 
is also j-solvable, no matter where the starting hole is assigned. 
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In other words, the graph cannot be solved with an end state smaller 
than k. A k-solvable graph will have solitaire number Ps(G) = k. 
Knowing the solvability of graphs is important for determining 
the following graph invariant. The minimal solvability number 
ms(G) is the smallest number of edges that have to be added to a 
graph G in order to make it solvable (de Wiljes and Kreh, 2022) 
where an ‘edge’ represents a connection between two pegs.

Figure 3. Examples of complete, path, cycle, star, and double star graphs.

The minimal solvability number ms(G) has been found for 
various graph classes such as complete graphs, path graphs, cycles, 
stars, and double stars (de Wiljes and Kreh, 2022). De Wiljes and 
Kreh point out that one “[has] to start with adding edges instead 
of solving the original graph first,” meaning that edges must be 
appended first before solving the graph (2022). Furthermore, since 
the complete graph (a graph where all vertices are connected to 
each other by edges) is solvable and it is possible to add edges to 
any graph until it becomes complete, we know that the minimal 
solvability number ms(G) exists for any graph G.

De Wiljes and Kreh pose a natural question about determining the 
minimal solvability number ms(G) of different classes of graphs. 
In this paper, we focus on caterpillar graphs, a type of graph 
consisting of a central ‘spine’ of vertices with smaller branches, or 
‘legs,’ extending from it. We examine the minimal solvability number 
ms(G) for various types of caterpillar graphs. Some caterpillars are 
isomorphic to graphs for which we know the minimal solvability number 
ms(G); these will be discussed and presented. More importantly, we 
establish precise upper bounds on the minimal solvability number 
ms(G) for a previously unknown caterpillar graph – specifically, 
caterpillars of length 3. These bounds significantly advance our 
understanding of the minimal solvability number ms(G) for this 
family. Some caterpillars of length 3 can also easily be solved 
with only adding one edge, so we also give examples of families of 
caterpillars of length 3 that have ms(G) = 1. The following proposition 
will be used to help with our results:

Proposition 1.1 [8, Proposition 1.1]. For every connected graph 
G = (V, E), ms(G) ≤ Ps(G) − 1.

Known Caterpillar Graphs
A caterpillar graph can be constructed from a path of length 

n by appending an arbitrary number of pendant vertices to each 
vertex on the path. The path with pendants attached to each of 
its vertices will be known as the spine of the caterpillar (Beeler et 
al., 2017). See Figure 4 below:

Figure 4. A caterpillar of length 3.

We want to categorize different caterpillars and determine 
their minimal solvability number ms(G). Through the study of 
the literature surrounding peg solitaire and minimal solvability 

number ms(G) of graphs, we are able to categorize some caterpillars 
and assign them a respective minimal solvability number ms(G). 
One simple category of caterpillars consists of caterpillars of length 
n with zero pendants attached to every vertex on its spine. Without 
the caterpillar’s pendants, we are only left with the spine of the 
caterpillar, which by construction is a path of length n. These 
graphs are isomorphic to the common path graphs, in which we 
know their minimal solvability number.

Proposition 2.1 [3, Theorem 2.3]. Let Pn be the path on n vertices 
where n  N. If we have P2n or P3, then this graph has ms(G) = 0. If 
we have P2n+1 for n > 1, this graph has ms(G) = 1.

This result follows immediately from the fact that paths of even 
length or length 3 are solvable while paths of odd length for an odd 
number greater than 3 are 2-solvable (Beeler and Hoilman, 2011). Com-
bined together with Proposition 1.1, we were able to get the given result.

Following this categorization, we now consider caterpillars 
with pendants attached to its spine since pendants are a notable 
feature of a caterpillar. For the remainder of this paper, we will 
be referring to caterpillars of length n. When mentioning said 
caterpillars, the lengths refer to the length of its spine, not 
including any extra length that could be considered with any of 
the caterpillar’s pendants.

That being said, let us now consider the smallest length caterpillar: 
a caterpillar of length one. This caterpillar will have the following 
notation: Cat1(n) where n is the number of pendants attached to 
the single vertex on its spine. These caterpillars are isomorphic to 
another graph with a known solvability and minimal solvability 
number, the star graphs. In general, a caterpillar of length 1 with 
n pendants is at best (n − 1)-solvable due to the nature of an empty 
spine vertex. If the starting hole was in the spine, no moves are 
possible since we would have no 2 adjacent pegs. If the starting 
hole was in a pendant, one can at most move from another pendant, 
over the spine, into the hole. Thus, (n − 1) pegs would still remain, 
showing it is unsolvable. Because of how unsolvable these caterpillars 
are, the minimal solvability number ms(G) increases with the 
number of pendants.

De Wiljes and Kreh determine the minimal solvability number 
ms(G) of star graphs by appending edges between pendants to 
form a sort of ‘windmill blade.’ Due to how they look, we will be 
referring to edges that connect two pendants as blades edges for 
the remainder of the paper. De Wiljes and Kreh ultimately prove 
the following result.

Proposition 2.2 [8, Corollary 2.1]. Let Cat1(n) be a caterpillar of 
length 1 with n pendants. If n ≥ 3, then

ms(Cat1(n))= .

To solve caterpillar graphs of length 1 with additional blade 
edges, we begin by placing the initial empty hole in a pendant. 
From here, the solution proceeds in steps:

1. Start by jumping a peg over the central spine into the empty hole.
2. Since there exists blades, we can jump via this blade back 

into the empty central spine.
3. With another pendant, jump into a pendant that has a 

blade edge. Depending on the number of pendants in our 
original caterpillar of length 1, we either have another 
blade or our graph is solvable.
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a total of L + R + C + 3 vertices. For the vertices on the spine, we 
will refer to the leftmost spine, center spine, and rightmost spine 
vertices at SL, SC, and SR, respectively. The L pendant vertices will 
be named l1, l2, ..., lL, the R pendant vertices will be named r1 , r2, 
..., rR, and the C pendant vertices will be named c1, c2, ..., cC.

With terminology for the vertices of the caterpillar established, 
we now turn to determining the minimal solvability number ms(G) 
for caterpillars of length 3. The simplest case occurs when ms(G) = 0, 
indicating that the caterpillar is naturally solvable without adding 
edges. This leads us to a central question: under what conditions 
is a caterpillar of length 3 solvable?

While there is no study specifically focused on the solv-
ability of caterpillars of length 3, we can still draw conclusions 
about their solvability by examining trees with diameter 4. 
Beeler and Walvroot (2015) demonstrate that any tree of 
diameter 4 can be constructed by appending pendant vertices 
to a star graph with n pendants. The structural relationship 
between caterpillars of length 3 and trees of diameter 4 allows 
us to leverage known results about these trees to make deduc-
tions about caterpillar solvability. In particular, the following 
proposition specifies the conditions under which a caterpillar 
of length 3 is solvable. This result was specialized for graphs 
with diameter at most 4.

Proposition 3.1 [5, Theorem 3.1]: Let L ≥ 2 and L ≥ R ≥ 1. Then, 
Cat3(L, C, R) is solvable if

(L + R) − 2 ≤ C ≤ (L + R) + 1.
Furthermore, the graph is k1−solvable, where k1 ≤ L + R − C 

- 1 if C ≤ (L + R) − 3. Also, it is k2−solvable, where k2 ≤ C − L - R 
if C ≥ (L + R) + 2.

We then can see that if (L + R) − 2 ≤ C ≤ (L + R) + 1 where L ≥ 2 
and L ≥ R ≥ 1, then the caterpillar of length 3 has ms(G) = 0. When 
approaching a caterpillar of length 3, one should first consider if 
C is within these bounds in order to see if it is originally solvable. 
More importantly in regard to the minimal solvability number 
ms(G), these caterpillars are unsolvable if C ≤ (L + R) − 3 or if 
C ≥ (L + R) + 2.

Before presenting our results, we introduce a key tool for 
analyzing the solvability of caterpillars of length 3. Defined by 
Beeler and Walvoort (2015), this tool involves configuring pegs 
and holes so that a specific sequence of jumps removes certain 
pegs while others stay constant. This setup, termed a package, 
is associated with an elimination process called a purge, which 
selectively reduces pegs on the graph. Among the various purges, 
the Double Star Purge is particularly valuable because it enables 
a systematic reduction of pendants, thereby simplifying the cat-
erpillar’s structure.

In the Double Star Purge, which applies to double star 
graphs (caterpillars of length 2), if the starting hole is posi-
tioned in either the left or right center, we can reduce the 
number of pendants on each side by k  N, provided k ≤ min(L, 
R). For example, if the hole starts in the right center, we perform 
the Double Star Purge by first jumping from a left pendant 
over the left center into the hole in the right center, followed 
by a jump from a right pendant over the right center into the 
left center. After these jumps, the number of pendants on each 
side is reduced by 1, and the hole returns to its original 
position.

Through this process, we can achieve solvability by a sequence 
of systematic jumps. A detailed algorithmic jump sequence is 
available in (de Wiljes and Kreh, 2022).

Naturally, the next caterpillar we consider is a caterpillar 
of length 2. This caterpillar will have the following notation: 
Cat2(L, R) where L is the number of pendants attached to the 
left center and R is the number of pendants attached to the 
right center where L, R  N. This is the final caterpillar in which 
we know its minimal solvability number since it is also iso-
morphic to a known graph – a double star graph. The solvability 
of caterpillars of length 2 is known and proved by the 
following.

Proposition 2.3 [4, Theorem 3.1]. Let L ≥ R ≥ 1. Then, Cat2(L, R) 
is solvable if L ≤ R + 1.

These caterpillars of length 2 by construction have ms(G) = 0, and 
the following result is known about its general minimal solvability 
number ms(G).

Proposition 2.4 [8, Proposition 2.5]: Let L ≥ R ≥ 1. Then,
ms(Cat2(L, R))= .

A full explanation on why this works is outlined by de Wiljes 
and Kreh (2022). In essence, the authors consider appending edges 
in between left pendants and perform a specific algorithmic jump 
set according to whether L − R  0, 1, 2, or 3 mod 4. So far, we 
have considered a variety of different caterpillars and have given 
the minimal solvability number based on its construction. We 
considered the number of pendants and total length of the caterpillar. 
Up to now, the given caterpillars were isomorphic to graphs in 
which we knew their minimal solvability number ms(G). Next, we 
are going to showcase properties of the minimal solvability number 
ms(G) of an unknown graph.

A New Caterpillar Graph
After determining the minimal solvability number ms(G) of 

caterpillars of length 1 and 2, we are now interested in finding 
the minimal solvability number ms(G) of caterpillars of length 
3. Unlike the previous caterpillars we have seen, caterpillars of 
length 3 are not isomorphic to a graph with a known minimal 
solvability number ms(G), meaning it cannot simply be pre-
sented as we have previously been doing. This raises a natural 
question: what is the most effective method for appending edges 
to caterpillars of length 3 in order to be able to solve them? 
Determining an optimal strategy for their placement becomes 
essential. To address this, we need to consider both the structure 
of the caterpillar and the specific arrangement of pendants, 
as these factors inf luence which configurations are solvable. 
We explore approaches for appending edges that minimize the 
number of edges needed.

In order to distinguish the vertices of a caterpillar of length 
3, we are going to assign a specific name to each of the vertices, 
depending on where they are. Suppose you are given a caterpillar 
of length 3. This caterpillar will have the notation Cat3(L, C, R) 
where L is the number of pendants attached to the leftmost spine 
vertex, C is the number of pendants attached to the center spine 
vertex, and R is the number of pendants attached to the rightmost 
spine vertex. Along with the 3 spine vertices, this caterpillar has 



RESEARCH Volume 15 Issue 1 | Fall 2024

24 | the harvard undergraduate research journal

caterpillar where L = n, R = 1, and C = 0, which is the most 
unbalanced that a caterpillar can get.

Theorem 3.1. Let L ≥ R ≥ 1 and n  N. Given Cat3(n, 0, 1), it has
ms(Cat3(n, 0, 1)) ≤ 1+ .

Proof. If n = 1, we have P5, which has ms(G) = 1 according to 
Proposition 2.1. Now, let n ≥ 2. Put the starting hole in SC and 
append the double star edge. Perform the following 2 jumps: ln· L·SC 
and SR· C·SL, where we jump from a left pendant over the left spine 
into the hole in the center spine and jump from the right spine 
over the center spine into the left spine. The remaining pendants, 
peg in SL, hole in SR and double star edge create a sub-graph that 
is a caterpillar of length 2 where L = n − 1 and R = 1. By Proposition 
2.4, this sub-graph has ms(G)=  = . Since we also 
added the double star edge, the number of edges we added to make 
the caterpillar solvable was 1 + , suggesting that this caterpillar 
has ms(G) ≤ 1+ . 

We, however, find that this is only an upper bound for the 
minimal solvability number ms(G) of this unbalanced caterpillar 
since we can append edges to these caterpillars a different way and 
get a lower ms(G). Take for instance Cat3(4, 0, 1). This caterpillar 
actually has ms(G) = 1 since we only append a blade edge, and 
it makes the entire graph solvable. We will see how in the proof 
below but note that there was no need to add the double star edge. 
In fact, through extensive case work where we played the game 
numerous times to the point where the number of left pendants 
ended up being 12, we find that we can make the upper bound 
tighter for these unbalanced caterpillars.

Figure 6. A game solving Cat3(4, 0, 1).

Theorem 3.2. Let L ≥ R ≥ 1 and n  N. Given Cat3(n,0,1), it has
ms(Cat3(n, 0, 1)) ≤ .

Proof. If n = 1, we have P5, which has ms(G) = 1 by Proposition 2.1.
If n = 2, add an edge connecting l1 and l2 and put the starting hole 
in SR. Perform the following 2 jumps: SL· C·SR and r1· R·SC. Using 
the newly appended blade edge, jump l1· 2·SL and solve the graph 
with r1· R·SC. Now, let n ≥ 3. Append  edges connecting l1 and 
l2, l3 and l4, l5 and l6... so that we make separate blades. Note that 
we considered appending  because this is the number of edges 
we appended to the caterpillar of length 1. We noticed that an 
unbalanced caterpillar of length 3 closely resembles a caterpillar 
of length 1. Put the starting hole in SC  and perform the following 
2 jumps: r1· R·SC  and SL· C·SR.

Next, using the first appended blade, perform the following 
jump: l1· 2·SL. The remaining pegs then form a caterpillar of length 

Figure 5. A Double Star Purge.

For caterpillars of length 3, we can leverage the Double Star 
Purge by focusing on specific sides of the caterpillar. For example, 
we can consider only the L left and C center pendants along with 
the center vertices SL and SC so that we work with a double star. 
Then, we can apply the Double Star Purge to systematically simplify 
this side of the caterpillar. The same principle applies if we consider 
the R right and C center pendants, as well as SR and SC. This technique 
allows us to progressively reduce the number of pendants and 
approach solvability.

Also, we will consider appending an edge connecting both SL 
and SR. This edge is one of the most efficient ones we can add since 
a player is able to reduce the L and R pendants by using this edge 
to perform Double Star Purges. Because of how it makes graphs 
more efficiently solvable, we will refer to the edge connecting SL 
and SR as the Double Star Edge.

We will also provide an argument as to why blade edges and 
the double star edge are the most efficient edges to append and 
are the only edges we consider in this paper. Given an unsolvable 
caterpillar of length 3 means that C ≤ L + R − 3. One strategy when 
appending edges is to append the edges that guarantee reducing 
the most amount of left and right pendants with the effort of getting 
C outside of this bound, which would make our graph solvable. 
Whereas any other edge would reduce the number of pendants 
by 1, blade edges and the double star edge reduces the number of 
left and right pendants by more than one. For blades, when used 
correctly, it reduces the number of left or right pendants by 2 
when the player jumps into SL or SR. Furthermore, with the double 
star edge, a player is able to reduce the number of pendants from 
both the left and right side of the caterpillar by k given that k < R. 
Doing these strategies correctly ensure that our graph becomes 
more solvable, showing why they may be the best strategy when 
appending edges and getting an accurate minimal solvability 
number ms(G) of caterpillars of length 3.

For the most part, caterpillars with a minimal solvability number 
ms(G) = 0 tend to be balanced, meaning they have a relatively 
equal number of left and right pendants. This pattern suggests 
that the closer a caterpillar is to balanced, the lower its minimal 
solvability number is likely to be. To better understand this 
relationship, we begin with the caterpillars that are most likely to 
have the highest minimal solvability number ms(G): those with the 
most extreme imbalance between left and right pendants. By 
establishing an upper bound in this highly unbalanced scenario, 
we can work closer to finding a true equality. Let us consider a 
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2 with n − 2 left pendants and one right pendant where we treat 
SL and SC as the respective left and right centers. If n < 5, the cater-
pillar is solvable by Proposition 2.3.

If n ≥ 5, more work is required. Using a non-blade pendant 
(like ln), perform ln· L·l1. This jump leaves a hole in SL, allowing 
us to use our second blade and jump l3· 4·SL. If n = 5 or 6, the 
remaining pegs leave a solvable caterpillar of length 2, in which 
we solve our graph accordingly.

If n ≥ 7, we still have an unsolvable caterpillar of length 2. In 
this case, however, we can use the first blade to our advantage. 
Jump from another non-blade pendant (like ln−1) and perform ln-1·

L·l2. We previously added a peg in l1, meaning out blade where 
l1 and l2 are connected is full again. Using this blade again, jump 
l1· 2·SL. If n = 7 or 8, the remaining pegs leave a solvable double 
star in which we can solve accordingly. If n ≥ 9, we iterate the 
same steps we took above using our additional blades plus jump-
ing into l1 and l2 to make more blades and reduce the number of 
left pendants. The steps we iterate are the following:
1. Using a non-blade pendant, jump into l1.
2. Use the next blade we have not used yet to jump into SL.
3. If still solvable, jump from a non-blade pendant over SL into l2.
4. Jump l1· 2·SL. If the graph still is not solvable, repeat from 

step 1. until our graph is reduced to a solvable caterpillar of 
length 2.

Once we do enough iterations, our graph will reduce to a solv-
able caterpillar of length 2. After appending  edges to our 
caterpillar, we are able to solve our graph, suggesting that ms(Cat3(n, 0, 
1)) ≤ . 

Since  ≤ 1+ , we successfully provided a tighter upper 
bound for this unbalanced caterpillar. Having found a tighter 
upper bound suggests that there may exist better strategies for 
adding edges, so the original algorithm provided in Theorem 3.1 
is only an upper bound for unbalanced caterpillars of length 3. 
By this point, we have seen balanced caterpillars and very unbalanced 
caterpillars and gave bounds on its minimal solvability number 
ms(G). Of course, there are also caterpillars of length 3 that are 
neither balanced or very unbalanced, which raises the question 
of whether one should append only blades or append also the 
double star edge to these caterpillars. Through more case work, 
we’ve decided that if we have Cat3(L, C, R) where R > 1, then the 
best method to solving these unbalanced caterpillars is by appending 
the double star edge and then edges based on the solvability of 
the caterpillar of length 2 that is sub-graphed.

In summary, the double star edge has helped us create solvable 
caterpillars, especially by enabling us to transition to sub-caterpillars 
like Cat2(L − 1, R). Then, we can use what we know to find the 
minimal solvability number ms(G). In cases like Cat3(L, 0, 1), the 
process of quickly eliminating the single right pendant allowed 
us to simplify the problem to solving the remaining caterpillar of 
length 2, demonstrating the effectiveness of the blade approach 
in these highly asymmetric scenarios. However, as we consider 
caterpillars with R > 1, such as Cat3(5, 0, 2), our analysis suggests 
that relying on blades alone becomes less effective. Although we 
can append only a single blade edge connecting either two left or 
two right pendants, this configuration often leaves us with isolated 
pegs on one side, thus failing to solve the caterpillar.

Given these observations, it appears that once R > 1, the double 
star approach is likely more advantageous. This is supported by 
findings from caterpillars of length 2, where an increase in R 

correlated with a decrease in the minimal solvability number 
ms(G). Thus, while further analysis may refine these conclusions 
(perhaps by exploring alternative edges beyond blades), the current 
evidence favors adopting the double star method in cases with 
larger values of R, as it consistently aligns with lower minimal 
solvability numbers.

Before proving our main result, we need to introduce the concept 
of hairy complete graphs. A hairy complete graph is denoted as 
Kn(a1, ..., an) where n is the number of vertices in the complete 
graph and ai for i = 1,...,n is the number of pendants attached to the 
kth vertex of the complete graph, for k < n. We will now explore 
the solvability of hairy complete graphs. Using the notation, we 
get the following.

Proposition 3.2 [1, Theorem 2.1]. For a hairy complete graph 
K3(x, y, z) where x ≥ y ≥ z, this graph is solvable if and only if 
x ≤ y + z + 2.

Beeler and Gray provide a complete discussion, but what is 
most important about this graph is that a caterpillar of length 3 
is actually a hairy complete graph with one less edge (2016). In 
fact, this is why the double star edge was most helpful edge to add 
since caterpillars of length 3, with the addition of the double star 
edge, become hairy complete graphs.

We will now give an upper bound on the minimal solvability 
number of a general caterpillar of length 3 where C ≤ L + R – 3. 
The reason we introduce the concept of L – C − R is because we 
know that a hairy complete graph is solvable if L ≤ C + R + 2. 
Thus, if L > C + R + 2, then it has a minimal solvability number 
ms(G) upper bound greater than 1. We then consider if L is one 
more greater than this value, two more greater, and so on. So, we 
end up considering L = C + R + 2 + 1, L = C + R + 2+ 2, ..., 
L = C + R + 2 + n. Moving numbers around, we get the concept 
of L − C − R = n, where n is the given difference. Thus, if n ≥ 3, 
then we know that the double star edge is not enough to solve our 
graph and that we need to append more edges. If n is anything 
less, we only need to append the double star edge.

Theorem 3.3. Let L ≥ R ≥ 1. Given Cat3(L, C, R) where C ≤ L + R − 3 
and L ≥ C. If L − C − R = n where n  N, then this caterpillar can 
be reduced to a case where C = 0 and L’ − R’ = n. This reduced 
caterpillar has:

ms(Cat3(L’, R’, 0)) ≤ 1 + .

Proof. We begin this proof with an argument as why the starting 
hole in SC is minimal solvability number of caterpillars of length 
2. It is important to distinguish that any caterpillar with center 
pendants is always reducible to a caterpillar with no center pendants. 
We achieve this using double star purges and by having the hole 
in SC. We want to be able to perform double star purges with both 
the left and right pendants to be able to reduce our caterpillar so 
that C = 0. Since C ≤ L + R − 3 and L ≥ C, we guarantee that we 
are going to be left with some number of right and left pendants 
once we reduce the number of center pendants to 0. Along with 
the double star edge, the remaining pegs form a caterpillar of 
length 2. Apart from this advantage, we can see that if the starting 
hole was not in SC, we never end up with a caterpillar of length 2 
with a lower minimal solvability number. Due to the nature of 
the minimal solvability number of caterpillars of length 2, we 
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want to reduce the number of left pendants we have while maintaining 
all of our right pendants. When the hole is in SC, we can jump 
l1· L·SC and SR· C·SL to end up with Cat2(L − 1, R). If the starting 
hole is in SR, we at best get the same result, Cat2(L − 1, R). If the 
starting hole is in SL, we get a worse caterpillar in Cat2(L − 1, R − 1). 
If the hole is in one of the left or right pendants, we again only 
end up with at best Cat2(L − 1, R) where some terminal states do 
not end up being double stars, which are useless in our algorithm. 
Therefore, you cannot get a better terminal state with a hole elsewhere 
and the hole in SC allows for the initial double star purges to be 
done to both the center, left, and right pendants. It is thus the 
most efficient starting hole.

Now, suppose you have Cat3(L, R, C). Append the double star 
edge and have the starting hole in SC. We know that this caterpillar 
is unsolvable by construction, so it has ms(G) > 1. If C > 0, we first 
want to reduce the caterpillar so that we end up with C = 0. Take 
the difference L − C − R and call that number n. The number n 
lets us reduce our original caterpillar to a case where C = 0 and 
L’ – R’ = n, leaving us with ms(Cat3(L’, R’, 0)).  We can further reduce 
using the optimal hole in SC and 2 jumps previously discussed to reduce 
our caterpillar to look like Cat2(L’ − 1, R’). By Proposition 2.4, this 
caterpillar of length 2 has ms(Cat2(L’ - 1, R’))=  = . 
Therefore, with the addition of 1 +  edges, our graph becomes 
solvable, suggesting that ms(Cat3(L’, R’, 0)) ≤ 1 + , in which 
Cat3(L’, R’, 0) was reduced from Cat3(L, R, C). 

We will end our discussion of the minimal solvability number 
of general caterpillars of length 3 by providing an upper bound 
for the second unsolvable case. Recall from Proposition 3.1 that 
a caterpillar is also unsolvable if C ≥ L + R + 2. If this is the case, 
the number of center pendants is always greater than the sum 
of the left and right pendants, meaning that double star purges 
would effectively rid of all the left and right pendants, leaving only 
center pendants. With all these double star purges, the remaining 
graph becomes a caterpillar of length 1, so we get the following.

Theorem 3.4. Let L ≥ R ≥ 1. Given Cat3(L, R, C), where C ≥ L + R + 2
ms(Cat3(L, R, C)) ≤ .

Proof. Start with the hole in SL. Jump c1· C·SL. We are then left 
with Cat3(L, R, C − 1) with a hole in SC. From here, perform L left 
purges, getting rid of all the left pendants. Then, perform R right 
purges, also getting rid of all the right pendants. In this case, 
however, do not make the final jump from a center pendant over 
SC as we want the hole to remain in SR. Performing all those purges 
leaves us with a caterpillar of length 1 with C − L − R + 2 pendants. 
According to Proposition 2.2, this caterpillar has ms(G) = . 
Thus, our graph becomes solvable after adding  edges, 
suggesting that ms(Cat3(L, R, C)) ≤ . 

We have now provided a number of upper bounds for the minimal 
solvability number of caterpillars of length 3. However, through 
some case work of some unsolvable caterpillars of length 3, we 
find that a number of these caterpillars only need an addition of 
one edge to make the graph solvable. In this next section, we will 
give necessary parameters needed to determine if a caterpillar of 
length 3 has ms(G) = 1.

Specific Caterpillars of Length 3
We will now consider an infinite number of caterpillars 

that have ms(G) = 1, where the additional edge that was added 

is a blade edge or the double star edge. This will show that 
many unsolvable graphs become solvable with the addition 
of just one edge. Our main focus will be the first unsolvable 
case where C ≤ (L + R) − 3. We will first consider blade edges, 
which was the approach we discussed for appending edges to 
caterpillars of length 1 and 2. Through extensive case work 
and referencing the k-solvability of these caterpillars, we are 
able to show the following:

Proposition 4.1. Let L ≥ 2 and L ≥ R ≥ 1. A caterpillar G of length 3 
such that L + R − C = 3 is unsolvable and has ms(G) = 1. Furthermore, 
we will show that adding an edge that connects two left pendants 
makes our caterpillar solvable.

Proof. Recall from Proposition 3.1 that this caterpil lar is 
m−solvable where m ≤ (L + R − C − 1) since we have that C ≤ L + R − 3, 
meaning it is at best 2-solvable. Thus, they have Ps(G) = 2, and 
according to Proposition 1.1, we know that this graph has ms(G) ≤ 1. 
Since these graphs are unsolvable, we have that 0 < ms(G) ≤ 1, 
meaning it has ms(G) = 1. We will now work out the first 5 cases; 
in each of the cases, add an edge between l1 and l2. Later, we will 
show that an arbitrary caterpillar satisfying the proposition can 
be reduced to one of these 5 cases:
1. L = 2, R = 1, C = 0

Start with a hole in SR and complete the following jumps: SL· C·SR, 
r1· R·SC, l1· 2·SL, SL· C·SR. One peg remains, so our graph is 
solvable.

2. L = 2, R = 2, C = 1
Start with a hole in SR and complete the following jumps: c1· C·SR, 
r2· R·SC, SL· C·SR, l1· 2·SL, r1· R·SC, SL· C·SR. One peg remains, 
so our graph is solvable.

3. L = 3, R = 1, C = 1
Start with a hole in SC and complete the following jumps: l3· L·SC, 
c1· C·SL, r1· R·SC, SC· L·l3, l1· 2·SL, l3· L·SC. One peg remains, 
so our graph is solvable.

4. L = 3, R = 2, C = 2
Start with a hole in SC and complete the following jumps: r1· R·SC, 
c1· C·SR, r2· R·SC, c2· C·SR, l2· L·SC, SR· C·SL, l3· L·l2, l1· 2·SL. 
One peg remains, so our graph is solvable.

5. L = 3, R = 3, C = 3
Start with a hole in SC and complete the following jumps: r1· R·SC, 
c1· C·SR, r2· R·SC, c2· C·SR, r3· R·SC, c3· C·SR, l2· L·SC, SR· C·SL, 
l3· L·l2, l1· 2·SL. One peg remains, so our graph is solvable.

Now, let n, m  N such that n ≥ 3 and m ≥ 1. Consider an 
arbitrary caterpillar of length 3 such that L = n, R = m, and C = 
n + m − 3. Append an edge connected l1 and l2 and put the starting 
hole in SC. Then, do double star purges on the left and center 
pendants until (n − 3) purges are done. This eliminates (n − 3) 
pendants adjacent to SL and (n − 3) pendants adjacent to SC. Next, 
if m ≤ 3, do no double star purges. If m > 3, do double star purges 
on the right and center pendants until (m − 3) purges are done, 
effectively ridding of (m − 3) pendants adjacent to SR and SC. In 
either case, we reduce to one of the base cases we showed above, 
meaning it is still solvable. Thus, any case where we have a cater-
pillar of length 3 where (L + R) − C = 3 is unsolvable with ms(G) 
= 1. 

We follow a similar idea for the following proposition. We 
group them together since they both have one extra step at the 
end when reducing to smaller cases.
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Proposition 4.2. Let L ≥ 2 and L ≥ R ≥ 1. A caterpillar of length 3 
such that L + R − C = 4 or 5 is unsolvable and has ms(G) = 1. Adding 
an edge that connects two left pendants makes our caterpillar 
solvable unless L + R − C = 5 and L = 3; this latter case requires 
us to add an edge connecting two right pendants in order to make 
the graph solvable.

Proof. L + R − C = 4:
Similarly to Proposition 4.1, let us work out the first 4 cases and 

then show that an arbitrary caterpillar reduces to one of these 4 
cases; in each of the cases, add an edge between l1 and l2:
1. L = 2, R = 2, C = 0

Start with a hole in SC and complete the following jumps: r1· R·SC, 
SL· C·SR, l1· 2·SL,r2· R·SC, SL· C·SR. One peg remains, so our 
graph is solvable.

2. L = 3, R = 1, C = 0
Start with a hole in SC and complete the following jumps: r1· R·SC, 
SL· C·SR, l1· 2·SL, l3· L·SC, SR· C·SL. One peg remains, so our 
graph is solvable.

3. L = 3, R = 2, C = 1
Start with a hole in SC and complete the following jumps: r1· R·SC, 
SL· C·SR, r2· R·SC, c1· C·SL, l3· L·SC, l1· 2·SL, SL· C·SR. One peg 
remains, so our graph is solvable.

4. L = 3, R = 3, C = 2
Start with a hole in SC and complete the following jumps: 
r1· R·SC, c1· C·SR, r2· R·SC, SL· C·SR, r3· R·SC, c2· C·SL, l3· L·SC, 
l1· 2·SL, SL· C·SR. One peg remains, so our graph is solvable.

Now, let n, m  N such that n ≥ 4 and m ≥ 1. Consider a caterpillar of 
length 3 such that L = n, R = m, and C = n + m − 4. Append an edge 
connecting l1 and l2 and put the starting hole in SC. Then, do double star 
purges on the left and center pendants until (n − 4) purges are done. This 
eliminates (n − 4) pendants adjacent to SL and (n − 4) pendants adjacent 
to SC. Next, if m ≤ 4, do no double star purges. If m > 4, do double star 
purges on the right and center pendants until (m − 4) purges are done, 
ridding (m − 4) pendants adjacent to SR and SC. In either case, we reduce 
to one of L = 4, R = k, and C = k for k = 1,2,3,4. If k = 1 do one more purge 
on the left, and if k ≠ 1, do 2 more purges; one on the left and one on the 
right. We will always reduce to one of the base cases provided, meaning 
our graph is solvable. Thus, any case where we have a caterpillar of length 
3 where L + R − C = 4 has ms(G) = 1.
L + R − C = 5:

Again, we will work out the first 6 cases and show that an 
arbitrary caterpillar will reduce to one of these 6 cases. For the 
first two cases when L = 3, add an edge between r1 and r2:
1. L = 3, R = 2, C = 0

Start with a hole in SC and complete the following jumps: l1· L·SC,  
SR· C·SL, l2· L·SC, r1· 2·SR, SR· C·SL, l3· L·SC. One peg remains, 
so our graph is solvable.

2. L = 3, R = 3, C = 1
Start with a hole in SC and complete the following jumps: r3· R·SC, 
c1· C·SR, l1· L·SC, SR· C·SL, l2· L·SC, r1· 2·SR, SR· C·SL, l3· L·SC. 
One peg remains, so our graph is solvable.

Now, we will consider the next 4 cases. In these, add an edge 
between l1 and l2:
1. L = 4, R = 1, C = 0

Start with a hole in SC and complete the following jumps: l3· L·SC, 
SR· C·SL, l4· L·SC, l1· 2·SL, SL· C·SR, r1· R·SC. One peg remains, 
so our graph is solvable.

2. L = 4, R = 2, C = 1

Start with a hole in SC and complete the following jumps: r1· R·SC, 
c1· C·SR, l3· L·SC, SR· C·SL, l4· L·SC, l1· 2·SL, SL· C·SR, r2· R·SC. 
One peg remains, so our graph is solvable.

3. L = 4, R = 3, C = 2
Start with a hole in SC and complete the following jumps: l3· L·SC, 
c1· C·SL, l4· L·SC, c2· C·SL, r1· R·SC, SL· C·SR, r2· R·SC, l1· 2·SL, 
SL· C·SR, r3· R·SC. One peg remains, so our graph is solvable.

4. L = 4, R = 4, C = 3
Start with a hole in SC and complete the following jumps: l3· L·SC, 
c1· C·SL, r1· R·SC, c2· C·SR, l4· L·SC, c3· C·SL, r2· R·SC, SL· C·SR, 
r3· R·SC, l1· 2·SL, SL· C·SR, r4· R·SC. One peg remains, so our 
graph is solvable.

Let n, m  N such that n ≥ 5 and m ≥ 1. Consider a caterpillar 
of length 3 such that L = n, R = m, and C = n + m − 5. Append an 
edge connected l1 and l2 and put the starting hole in SC. Then, do 
double star purges on the left and center pendants until (n − 5) 
purges are done. This eliminates (n − 5) pendants adjacent to SL 
and SC. Next, if m ≤ 5, do no double star purges. If m > 5, do double 
star purges on the right and center pendants until (m − 5) purges 
are done, ridding (m − 5) pendants adjacent to SR and SC. In either 
case, we reduce to one of L = 5, R = k, and C = k for k = 1,2,3,4,5. 
If k = 1 do one more purge on the left, and if k ≠ 1, do 2 more 
purges; one on both the left and right. We will always reduce to 
one of the base cases provided, meaning our graph is solvable. 
Thus, any case where we have a caterpillar of length 3 where 
L + R − C = 5 has ms(G) = 1. 

This fact is useful to know since we are able to reduce down caterpil-
lars that are massive and still only append one edge in order to make it 
solvable. This pattern unfortunately stops working when L + R − C = 6. 
Through an analysis of appending blade edges to a caterpillar where L 
= 3, R = 3, and C = 0, we see that appending one blade is not enough, no 
matter where the starting hole is. Checking adding a blade on either the 
left or right side was simple due to the symmetry of the graph. Of course, 
blades are not the only edges that one can add to a caterpillar of length 
3, so we must consider appending edges elsewhere before concluding it 
has ms(G) > 1. Testing out edges like an edge connecting lL and SC, lL and 
rR, or rR and SC  showed little improvement, and it still gave the graph 
appear to have ms(G) > 1. However, adding the double star edge helped 
us out tremendously. If this edge is added, then a caterpillar of length 3 
where L = 3, R = 3, and C = 0 has ms(G) = 1. The following steps show 
the sequence of moves needed to solve the caterpillar with the addition 
of only that edge connecting SL and SR: Start with a hole in SC and complete 
the following jumps: l3· L·SC, r3· R·SL, l2· L·SR, r2· R·SL, l1· L·SR, r1· R·SL, 
SL· C·SR.This sequence of jumps effectively rids of all the pegs, but one, 
showing the solvability of the graph. For most of the jumps, the player 
ended up using double star purges between the left and right pendants 
since the edge connecting SL and SR ended up making a double star (or 
caterpillar of length 2) sub-graph within this caterpillar of length 3.

In fact, we can generalize the number of pendants that are on 
the left and right side as long as we keep C = 0 for now. Thus, we 
can get the following.

Proposition 4.3. Let L ≥ R ≥ 1. A caterpillar of length 3 such 
that L = n, R = n, and C = 0 for n ≥ 2 has ms(G) = 1, where the 
additional edge added is the double star edge.

Proof. Start hole at SC and add the double star edge. Jump ln· L·SC. 
Using the double star edge, the pendants on the left and right 
produce a sub-graph Cat2(n − 1, n), which is solvable by 
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Proposition 2.3. Solving the sub-graph using double star purges 
leaves a peg in SL. Finally, jump SL· C·SR. 

In fact, due to Proposition 2.3 and following a similar algorithm 
to the previous proposition:

Corollary 4.1. Let L ≥ R ≥ 1. Consider the following caterpillars 
of length 3:
1. L = n, R = n − 1, C = 0 for n ≥ 2
2. L = n, R = n − 2, C = 0 for n ≥ 3
Both of these caterpillars have ms(G) = 1 where we only append 
the double star edge.

Proof. L = n, R = n − 1, C = 0:
Start hole at SC and add the double star edge. Jump ln· L·SC. 

Using the double star edge, the pendants on the left and right 
produce a sub-graph Cat2(n − 1, n − 1), which is solvable by Propo-
sition 2.3. Solving the sub-graph using double star purges leaves 
a peg in SR. Finally, jump SR· C·SL to solve the graph.
L = n, R = n − 2, C = 0:

Start hole at SC and add the double star edge. Jump ln· L·SC 
and SR· C·SL. Using the double star edge, the remaining pendants 
leave a sub-graph Cat2(n − 1, n − 2) which is solvable by Proposi-
tion 2.3. Solving the sub-graph using double star purges leaves a 
single peg in SR. 

Furthermore, using our previous discussion of the solvability 
of hairy complete graphs, we are able to deduce the following.

Proposition 4.4. Let L ≥ 2 and L ≥ R ≥ 1. A caterpillar of length 
3 with L, R, and C left, right, and center pendants, respectively, 
where C ≤ (L + R) − 3 has ms(G) = 1 if
1. L ≥ C and L ≤ C + R + 2
2. L < C and C ≤ L + R + 2
In both cases, we only append the double star edge.

Proof. Appending the double star edge to this caterpillar gives us 
a hairy complete graph. We thus consider 2 cases. If L ≥ C, then 
L ≤ C + R + 2 for our graph to be solvable. If L < C, then C ≤ L + R + 2 
for our graph to be solvable. Both follow immediately from Proposition 
3.2. In either case, we start the hole in SC and reduce to a case 
where L = n, C = 0, and R = n, n − 1, or n − 2. This is possible since 
in either case, C ≤ (L + R) − 3, L ≥ 2 and R ≥ 1. Since we only added 
one edge to solve the graph, this caterpillar has ms(G) = 1. 

In fact, we can extend the hairy complete graph argument to 
the second unsolvable case of caterpillars of length 3.

Proposition 4.5. Let L ≥ R ≥ 1. A caterpillar of length 3 with L, R, and 
C left, right, and center pendants, respectively, where C = L + R + 2 
has ms(G) = 1. We only append the double star edge.

Proof. Since for the second unsolvable case C ≥ L + R + 2, we only 
consider the case where C ≥ L. According to Proposition 3.2, by 
appending the double star edge, we get a hairy complete graph that is 
solvable if C ≤ L + R + 2. Thus, we have that L + R + 2 ≤ C ≤ L + R + 2, 
meaning it is only solvable if C = L + R + 2. The way we solve this 
is by putting the starting hole in SL and jumping c1· C·SL. The 
resulting caterpillar is Cat3(L, R, L + R + 1). By performing double 
star purges getting rid of the L left pendants and R right pendants, 
leaves us with a sub-graph with pegs in SL, SR, and cL + R + 2. Because 
we have the double star edge, we can perform the following jumps 

to solve the graph: SL· R·SC and cL + R + 2· C·SR. 
These results show the utility of the double star edge in graph solv-

ability and offers new pathways for investigating solvable structures in 
similar graph classes. By extending the framework to encompass addi-
tional pendant arrangements, this work lays the groundwork for further 
exploration into caterpillars of varying lengths. Moving forward, these 
insights could be particularly valuable when finding the minimal solv-
ability number of other graphs that have caterpillars of length 3 as subsets.

Possible Future Work and Broader Implications
We end with some possible open questions for further research. 

Though we gave many upper bounds, we are interested in knowing the 
actual minimal solvability number ms(G) of a general caterpillar G of 
length 3. Of course, once that is found, how can we use that to find the 
ms(G) of caterpillars of length 4, 5, 6, etc. Also, one might work in prov-
ing that a certain move set/sequence of jumps is the most efficient. How 
do we know that an algorithm we get is the best algorithm? Moreover, 
one can expand and look for the minimal solvability number ms(G) of 
other unknown graphs like trees of diameter 4 or asters.

In retrospect, having a tight upper bound for caterpillars of length 
3 furthers the study of the ms(G). Graphs can take any size and shape, 
and it is important to group them in families when considering this 
invariant. Doing so allows us to work on further graphs that have as a 
subset known familiar graph. In fact, this is how we were able to find 
the ms(G) of caterpillar graphs of length 1 and length 2. The strategies 
in this game can further be applied to other versions of peg solitaire. 
We only considered the ‘jump’ move, but the ms(G) might change if 
we consider both the ‘jump’ and ‘merge’ move of peg solitaire. Having 
these results gives us a starting point for this other version of the game. 
Lastly, we touch on results and algorithmic approaches of playing a 
game efficiently, and we can further take these strategies on other 
combinatorial games. We hope these findings contribute to any regard.
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